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Abstract 
The Butterfly Optimization Algorithm (BOA) is a swarm-based technique, inspired by mating and food searching process of butterflies, developed last year. 
Experiments indicate that the BOA provides substantial exploration capability on conventional unconstrained benchmark problems, however for the cases 
with more complex and noisy domains the algorithm can easily be trapped into local minima due to its restricted exploitation behavior. To tackle this issue, 
the current study deals with introducing an alternative search strategy to explore the region of the search domain with high certainty. Such that, firstly a 
weighted agent is defined and then a quadratic search is performed in the vicinity of this pre-defined agent. This alternative search strategy is named 
Enhanced Quadratic Approximation (EQA) and it is combined with the BOA method to improve its exploitation behavior and provide an efficient search 
algorithm. Thus, obtained new method is named as Enhanced Quadratic Approximation Integrated with Butterfly Optimization (EQB) algorithm. Different 
properties of the proposed EQB are tested on mathematical and structural benchmark problems. Acquired results show that the introduced algorithm, in 
comparison with its parent method and some other well- established reported algorithms in the literature, provides a competitive performance in terms 
of stability, accuracy and convergence rate. 

 
Keywords: quadratic approximation, butterfly optimization algorithm, hybrid methods. 

 

Introduction 
 
The optimization process is the scheme to select the most proper alternative among the available options. Although there 
are different optimization techniques available, generally, they can be categorized into two main groups as deterministic 
and non-deterministic approaches (Degertekin, 2012; Nobile et al., 2018; Pence, Cesmeli, Senel, & Cetisli, 2016). 
Deterministic approaches are gradient-based methods which apply the gradient information of the optimization objective 
function to determine their search pattern. These methods are fast and accurate, but they have two main drawbacks. First, 
they require a continuous (or partially continuous) objective function and its gradient(s) information to determine the step 
size and search direction of the optimization process (Mortazavi, 2021a). Defining such an objective function for many 
engineering problems is very difficult or even impossible. Second, these methods are highly sensitive to the starting point 
of the process and for certain step sizes, they can easily be trapped into the closest local optima (Finotto, da Silva, Valášek, 
& Štemberk, 2013; Hasançebi, Çarbaş, Doğan, Erdal, & Saka, 2010). Consequently, to solve the complex optimization 
problems an alternative method seems to be required. In this regard, non-deterministic approaches can be utilized to search 
the complicated domains since they do not demand any continuous objective function and/or its gradient(s) information. 
 
Metaheuristic algorithms constitute the important category of the non-deterministic methods. These algorithms mostly 
provide simple but efficient mathematical searching strategies which are inspired by natural phenomena, physical rules or 
social behaviors (Shi & Eberhart, 1998). One can chronologically sort some of these methods as Particle Swarm optimization 
(PSO), Ant Colony Optimization (ACO) (Dorigo & Blum, 2005), Gravitational Search Algorithm (GSA) Symbiotic Organisms 
Search (SOS) (Cheng & Prayogo, 2014), Search Group Algorithm (SGA) (Gonçalves, Lopez, & Miguel, 2015), Heat Transfer 
Search (HTS) (Patel & Savsani, 2015), Water Wave Optimization (WWO) (Zheng, 2015), Virus Optimization Algorithm (VOA) 
(Liang & Cuevas Juarez, 2016), Quantum inspired Social Evolution (QSE) (Pavithr & Gursaran, 2016), Interactive Fuzzy Search 
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Algorithm (IFSA) (Mortazavi, 2019b). In the last two decades along with developments in the computer technologies the 
application of these methods on solving different type of optimization problems are highly risen (Dede & Ayvaz, 2015; Ding, 
Huang, & Lu, 2016; Moloodpoor, Mortazavi, & Ozbalta, 2019; Montes, Mortazavi, 2020, 2021b; Mortazavi & Togan, 2017b, 
2017a; Mortazavi, Toğan, Daloğlu, & Nuhoglu, 2018; Mortazavi, Togan, & Moloodpoor, 2019; Mortazavi, Toǧan, & Nuhoglu, 
2018; Mortazavi, Toǧan, & Nuhoǧlu, 2017; Quagliaroli, Malerba, Albertin, & Pollini, 2015; Souza, Fadel Miguel, Lopez, 
Miguel, & Torii, 2016; Tang, Li, Luo, & Liu, 2015). 
 
The butterfly optimization algorithm (BOA) is a recently developed metaheuristic approach (Arora & Singh, 2019). This 
method is mathematically inspired by the butterflies mating and food-searching behaviors. The BOA uses two different 
paradigms for navigating the agents (i.e. butterflies): tracing of the best agent of the colony for global search and pairwise 
interacting of agents for local search. Current authors test the performance of the BOA on various constrained and 
unconstrained problems (Mortazavi, 2019a, 2019c) and the results indicate that the BOA works considerable well on solving 
the unconstrained cases with smooth domains. However, for the problems with complex search domain (i.e. shifted and 
rotated) or for those in which domains are bounded with different constraints (e.g. structural optimization problems) 
performance of the BOA is considerably declined. Indeed, the BOA shows considerable good performance when problem 
has a distinct global optimum, but when the number of local optima is raised the search capability of this method 
significantly drops. Considering that several engineering problems have constrained and complex search spaces, in order to 
use the BOA as a general optimizer tool, the exploitation behavior of this method required to be fundamentally fortified. 
  
To address this problem, in the current study, initially, the quadratic approximation search strategy is adjusted employing 
the concept of weighted agent. Weighted agent is defined as the weighted average of all population. Indeed, it applies each 
agent’s information based on its degree of quality (determined by its objective function value). So, making a quadratic search 
in the vicinity of this agent can provide an efficient exploitation search behavior for the algorithm. Presented strategy is 
named as enhanced quadratic approximation (EQA) and it is combined with affirmative exploration ability of the BOA to 
provide an effective search method. 
 
For the sake on enhanced quadratic approximation (EQA) strategy, the BOA rather than using fairly fully random search, 
applies more reasonable neighborhood search around promising area of the domain. Since the new hybrid method 
combines the affirmative search behaviors of BOA and EQA methods, it is named as Enhanced Quadratic Approximation 
Integrated with butterfly optimization (EQB) technique. The search ability of the proposed EQB method is tested on several 
unconstrained and constrained problems. The acquired results are presented through illustrative tables as diagrams. Also, 
to determine the best balance between exploration and exploitation behaviors a comprehensive sensitivity analyses are 
performed over regulator parameter. 
 
The rest of this study is arranged as follows: in the next section definitions of the BOA, EQA and proposed EQB methods are 
given. Section 3, is devoted to providing the sensitivity analysis over balancing parameter of EQB approach and 
comparatively assessing the accuracy, diversity, convergence rate and complexity of proposed algorithm. In section 4, the 
search capability of EQB is tested on four real world structural problems and results are compare with some other well-
stablished techniques. Consequently, in last section the corresponding conclusion is given. 

 

Methodology 
 
Formulation of optimization methods 
 
In the current section for more clarity initially butterfly optimization algorithm (BOA) and Enhanced Quadratic 
Approximation (EQA) are described. Then the proposed Enhanced Quadratic Approximation Integrated with Butterfly 
Optimization (EQB) method and its related terms are explained. 
 
Butterfly optimization algorithm (BOA) 
 
In BOA method each agent (i.e. butterfly) applies two different patterns to search the problem’s domain. For global search, 
agents track the best agent of the colony and for local search, they trace the path determined by pairwise interacting 
between random agents. This formulation is defined as below: 
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In this formulation 𝑟1

  and 𝑟2
  are two random numbers uniformly selected from [0,1] interval (Arora & Singh, 2019) (Arora & 

Singh, 2019). Superscripts t and t+1 show the current and updated values of the corresponding variable. Also, 𝑋𝐺 is the best 
agent of the colony and 𝑋 

𝑡
𝑗  and 𝑋 

𝑡
𝑘 are two random agents of the colony and j and k are two random integers selected 

from [1, M] interval and 𝑗 ≠ 𝑘. The number of population in the colony is shown by M, and p is the adjusting parameter 
which is set as 0.8 (Arora & Singh, 2019).  The fragrance factor (f) indicates the objective function value and C and a are two 
tuning parameters which are taken as 0.001 and 0.1, respectively (Arora & Singh, 2019). As illustrated in the given 
formulation the local search pattern of BOA algorithm is highly stochastic, since kth agent moves toward jth agent no matter 
which of them is in the better position (i.e. have better objective value). So, most of the time such an approach for local 
search does not provide a promising movement (Mortazavi, 2019a, 2019c). To tackle this problem, the current phase is 
replaced with the quadratic neighborhood search around the weighted particle scheme. This approach is explained in the 
next section. 
 
Enhanced quadratic approximation (EQA) 
 
In the quadratic approximation (QA) approach three parents (R1, R2 and R3) produce a child agent (Deep & Das, 2009). This 
process is formulated as follows: 
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where, R1, R2 and R3 are three randomly selected different agents from colony while 𝑅1 ≠ 𝑅2 ≠ 𝑅3. Also, f(.) returns the 
objective value of any coresponding agent. In the current study, to provide more efficinet local search, this scheme is 
enhanced by setting the one parent (e.g. R1) as the weighted agent (  𝑅 
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𝑤
 ). The weighted agent is the weighted 

average of all available agents, and since it contributes the data of all agents, it is able to spot more promising area in the 
search domain (Mortazavi & Toğan, 2016). Weighted agent is defined as follows: 
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in which M is the number of all agents, 𝐗𝑊 designates the weighted agent, �̂�𝑖

𝑤 is the coefficient shows the effect of each 

agent based on its objective function value, f (.) returns objective function, max
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worst and best objective values of all agents, respectively. The 𝜀 is a small positive number (e.g. set as 0.00001) to avoid 
division by zero condition, if any. So, by substitution the  𝑅 

 
1 for 𝑿𝑤  proposed EQA formulation is defined as follows: 
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Enhanced quadratic approximation integrated with butterfly optimization algorithm (EQB) 
 
Despite of effective global search strategy of BOA, the local search of this method is not enough to handle the complex 
search domains with high number of local optima or engineering problems with different (convex or non-convex) boundaries 
(Mortazavi, 2019a, 2019c). To mitigate this shortcoming, the global search strategy of BOA is combined with EQA search 
scheme. The new technique is named as enhanced quadratic approximation integrated with butterfly optimization (EQB) 
method and it is mathematically formulated as follows: 
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where, f(.) returns the objective value of any corresponding agent and 𝑋𝐺  and 𝑋𝑊 are the best and weighted agents, 
respectively. C and a are defined same as standard BOA. The probability factor (p) is determined via sensitivity analyses and 
its value is set as p=0.5. The number of population in the colony is demonstrated by M. Also, i index indicates the current 
agent while j and k indexes are two random integer values selected from [1, M] interval. For more clarity the flowchart for 
EQB is given in Figure 1. The efficiency and search capability of BOA is tested in the next section. 
  

Figure 1. Flowchart for EQB method. (Self-Elaboration). 
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Results and discussion  
 
Assessing EQB on unconstrained problems 
 
In this section, the search ability of proposed EQB is verified on some unconstrained problems. Initially, to determine the 
most proper value for balance parameter (p) a sensitivity analysis is performed over this parameter. The convergence rate, 
accuracy level, diversity and complexity indexes of EQB is comparatively evaluated. To prevent any premature convergence 
each example is solved for 30 times. For all runs the machine equipped with intel CORE-i7™ processor with 6 MB RAM 
installed. The parameter setting for applied algorithms are presented in Table 1 as follows: 
 

Table 1. Parameter setting for the applied algorithms. (Self-Elaboration). 

Algorithm Year Pop. size Parameter 

FA  
(Yang XS, 2009) 

2009 
50 𝛼 = 0.5, 𝛽𝑚𝑖𝑛 = 0.2, 𝛾 = 1 

MBO  
(Sadollah, Bahreininejad, Eskandar, & Hamdi, 2012) 

2012 
50 Ns=12, 𝑑0

𝑓
= 300, 𝜇 = 0 

DSO  
(Kedar Nath Das & Singh, 2014) 

2014 
50 - 

IMO  
(Javidy, Hatamlou, & Mirjalili, 2015) 

2015 
50 - 

iPSO  
(Mortazavi & Toğan, 2016) 

2017 
50 𝛼 = 0.4, 𝐶3 = 𝐶4 = 1, 𝐶2 = 2 

BOA  
(Arora & Singh, 2019) 

2019 
50 𝐶 = 0.01, 𝑎 = 0.1, 𝑝 = 0.8 

EQB Current work 50 𝐶 = 0.01, 𝑎 = 0.1, 𝑝 = 0.5 

 
Sensitivity analysis over balancing parameter (p) 
 
To select the most proper value for balancing parameter (p) a sensitivity analysis is performed over this parameter 
considering 10 different mathematical functions. The functions and their specifications are addressed in Table 2 and 3, 
respectively. The results of the sensitivity analysis is tabulated in Table 4. Based on given values in this table p=0.5 is the 
most proper value for balancing parameter (p). 
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Table 2. Benchmark functions for accuracy and sensitivity assessment of EQB. (Self-Elaboration). 

No Function Formulation 

F1 Sphere 𝑓(𝐗) =∑𝑥𝑖
2

𝐷

𝑖=1

 

F2 Schwefel 2.22 𝑓(𝐗) =∑|𝑥𝑖| +∏|𝑥𝑖|

𝐷

𝑖=1

𝐷

𝑖=1

 

F3 Schwefel 1.2 𝑓(𝐗) =∑(∑𝑥𝑗

𝑖

𝑗=1

)

2
𝐷

𝑖=1

 

F4 Schwefel 2.21 𝑓(𝐗) = max𝑖=1,…,𝐷|𝑥𝑖| 

F5 Rosenbrock 𝑓(𝐗) = ∑(100(𝑥𝑖+1 − 𝑥𝑖
2)2 + (𝑥𝑖 − 1)

2)

𝐷−1

𝑖=1

 

F6 Rastrigin 𝑓(𝐗) =∑(𝑥𝑖
2 − 10 cos(2𝝅𝑥𝑖) + 10)

𝐷

𝑖=1

 

F7 Alpine 𝑓(𝐗) =∑|𝑥𝑖 sin(𝑥𝑖) + 0.1𝑥𝑖|

𝐷

𝑖=1

 

F8 Griewank 𝑓(𝐗) =∑
𝑥𝑖
2

4000
−∏cos (

𝑥𝑖

√𝑖
) + 1

𝐷

𝑖=1

𝐷

𝑖=1

 

F9 Ackley 𝑓(𝐗) = −20 exp

(

 −0.2√∑
𝑥𝑖
2

𝐷

𝐷

𝑖=1
)

 − exp (∑cos
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𝐷

𝐷
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F10 Powell 𝑓(𝐗) =∑[(𝑥4𝑖−3 + 10𝑥4𝑖−2)
2

𝑛
4

𝑖=1

+ 5(𝑥4𝑖−1 − 𝑥4𝑖)
2 + (𝑥4𝑖−2 − 2𝑥4𝑖−1)

4 

                     +10(𝑥4𝑖−3 − 𝑥4𝑖)
4] 

 
Table 3. Properties of the benchmark functions. (Self-Elaboration). 

No Features Range fmin D  Accuracy level 

F1 US [-100, 100] 0 50 1.0E−06 

F2 UN [-10, 10] 0 50 1.0E−06 

F3 UN [-100, 100] 0 50 1.0E−06 

F4 UN [-100, 100] 0 50 1.0E−06 

F5 MN [-30, 30] 0 50 1.0E−02 

F6 MS [-5.12, 5.12] 0 50 1.0E−02 

F7 MS [-10, 10] 0 50 1.0E−02 

F8 MN [-600, 600] 0 50 1.0E−02 

F9 MN [-32, 32] 0 50 1.0E−02 

F10 UN [-4, 5] 0 50 1.0E−06 
U:unimodal; M:multimodal; S:seperable; N:non-seperable; D:dimension 
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Table 4. Sensitivity result for balancing parameter (p). (Self-Elaboration). 

p F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 

0.1 4.36E-085 7.52E-72 8.43E-09 2.89E-04 6.32E+02 9.41E-45 8.87E-05 9.98E-10 3.65E-12 9.87E-15 

0.2 6.82E-132 5.01E-73 2.85E-10 1.23E-05 6.98E+01 9.65E-82 5.38E-12 2.35E-12 2.68E-18 6.58E-18 

0.3 9.12E-132 5.55E-90 1.08E-11 8.76E-15 4.24E+01 5.58E-85 2.55E-14 1.58E-14 4.57E-20 5.83E-18 

0.4 6.99E-140 6.11E-91 5.65E-14 8.11E-15 4.24E+01 2.29E-89 1.45E-14 8.3E-15 2.33E-20 2.40E-19 

0.5 4.98E-140 4.12E-91 4.99E-14 7.09E-15 4.24E+01 2.30E-89 1.42E-14 8.33E-15 5.80E-21 2.40E-19 

0.6 5.25E-140 8.02E-91 4.99E-14 7.09E-15 4.24E+01 8.02E-89 1.42E-14 8.73E-15 2.29E-20 2.40E-19 

0.7 5.06E-139 2.54E-85 5.54E-13 5.78E-14 4.24E+01 9.28E-85 3.98E-14 8.91E-15 2.38E-20 8.36E-18 

0.8 5.22E-138 1.09E-39 9.85E-13 1.66E-13 5.08E+01 3.65E-84 4.19E-14 8.92E-15 5.24E-18 7.14E-17 

0.9 8.16E-137 2.94E-38 9.98E-13 3.90E-11 5.97E+01 3.33E-80 3.42E-11 9.04E-15 9.65E-17 1.36E-17 

 

Accuracy analysis 
 
In this section the global search capacity of EQB method is evaluated by solving 10 benchmark functions announced in Table 
2. The properties of them are reported in Table 3. These functions are applied for testing the ability of the EQB algorithm to 
spot the global optimum point of the domain, so all of them are selected to be converged into the origin. Indeed, in 
comparison with functions with shifted, rotated and/or composite domains they have fairly simpler search spaces. To 
perform a comprehensive evaluation of the proposed method the dimension of the problem (D) is set as D=50 for all 
functions. 
  
To prevent any premature convergence each test is run for 30 times. The success rate (SR) is defined as the percentage of 
runs which algorithm can achieve the predefined accuracy level (Suganthan et al., 2005). The accuracy level for each function 
is given in Table 3. To check the stability of the algorithm, the standard deviation (Std.) of each run is given. The stop criterion 
for process is considered as 10000*D (Suganthan et al., 2005). All obtained values for explained properties are reported in 
Table 5 for all tested methods. Based on ranking values given in this EQB improves the exploitation behavior of BOA (e.g. in 
Ackley function). The statistical data as Success Rate (SR) and standard deviation (Std.) values demonstrate that EQB also 
enhances the stability of the BOA algorithm. The outcomes indicate that the proposed EQB comparatively shows superior 
performance on handling the selected benchmark problems. 
  



222 
 

Table 5. Comparative results for EQB and other techniques. (Self-Elaboration). 

Func. Value FA MBO DSO IMO iPSO BOA EQB 

F1 Mean 8.2258E-04 1.0428E-08 5.9987E-25 8.1242E-01 3.4178E-78 2.0258E-140 5.7643E-138 

 Std. 5.6698E-18 2.6587E-09 9.0998E-38 7.1960E+01 1.1360E-80 2.0982E-145 2.102E-153 

 SR 16 92 100 0 100 100 100 

 Rank 6 5 4 7 3 1 2 

F2 Mean 9.5589E-04 5.1934E-07 3.1123E-22 2.1851E+00 3.8675E-54 5.2587E-86 4.5128E-88 

 Std. 8.7431E-09 9.6398E-06 9.4865E-25 1.8235E+00 6.8712E-55 9.9465E-88 1.1221E-98 

 SR 16 83 100 0 100 100 100 

 Rank 6 5 4 7 3 2 1 

F3 Mean 8.2201E-02 2.3001E+00 9.2587E-01 6.3548E+00 8.0052E-03 1.0025E-04 2.1245E-11 

 Std. 7.3641E-02 1.3687E+00 5.5458E-02 4.2247E+00 0.0032E-02 2.0012E-06 9.9984E-14 

 SR 6 0 0 0 84 84 100 

 Rank 4 6 5 7 3 2 1 

F4 Mean 2.3658E-04 3.5600E+00 2.3365E-04 1.3658E+01 1.0025E-12 1.3407E-11 4.3627E-14 

 Std. 8.3247E-05 2.9176E-01 1.8396E-04 8.2714E+01 6.2554E-20 7.0031E-19 6.3167E-18 

 SR 10 0 40 0 96 93 100 

 Rank 5 6 4 7 2 3 1 

F5 Mean 5.3625E+01 4.6124E+01 6.3265E+01 9.0811E+01 3.0987E+01 4.9819E+01 4.2509E+01 

 Std. 1.3168E+00 6.3678E+00 5.3014E+00 1.0987E+00 4.6548E+00 2.8824E-01 1.9812E-2 

 SR 0 0 0 0 0 0 0 

 Rank 3 4 6 7 1 5 2 

F6 Mean 9.3654E+01 6.2547E+01 1.8589E-10 1.5487E+02 2.0236E-10 1.6598E-88 2.3114E-89 

 Std. 7.3405E+01 2.2523E+00 3.3698E-12 5.0058E+00 8.9162E-12 2.1245E-99 8.8467E-101 

 SR 0 0 73 0 84 100 100 

 Rank 5 4 2 6 3 1.5 1.5 

F7 Mean 2.7569E-02 2.8658E+00 8.3652E-08 1.3654E+01 8.3698E-11 2.3365E-14 1.4378E-14 

 Std. 1.3136E-02 2.0269E+00 9.3587E-09 8.3654E+00 9.3654E-12 4.3265E-16 5.7234E-16 

 SR 3 0 13 0 54 96 100 

 Rank 5 6 4 7 3 2 1 

F8 Mean 5.6058E-07 5.0987E+01 2.0587E-12 5.7391E+02 8.4708E-09 7.9087E-14 8.8356E-15 

 Std. 8.6987E-08 2.8778E-01 1.8259E-14 7.9456E+01 5.2978E-10 6.9236E-16 2.3678E-16 

 SR 26 0 66 0 20 100 100 

 Rank 4 5 2 6 3 1.5 1.5 

F9 Mean 2.5498E-01 1.2896E+00 5.3698E-08 3.3715E+00 1.8856E+00 1.8186E+00 1.4578E-22 

 Std. 7.9632E-02 5.5569E-01 9.2468E-10 1.8026E-01 9.0921E-01 6.4987E-01 7.2634E-12 

 SR 0 0 23 0 0 0 100 

 Rank 3 4 2 7 6 5 1 

F10 Mean 3.5874E-03 4.3658E+03 5.3264E-03 6.3254E+03 6.3254E-04 9.3654E-17 5.5290E-18 

 Std. 6.7632E-04 5.3164E+02 7.9865E-03 2.3654E+03 2.3698E-08 2.3658E-18 3.5432E-22 

 SR 16 0 13 0 26 93 96 

 Rank 4 6 5 7 3 2 1 
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Diversity analysis 
 
The diversity is one of the important properties highly affect the search efficiency of the algorithm. High level of the diversity 
can delay convergence and low level of diversity can lead to premature convergence. So, a proper level of diversity is 
required for any efficient search strategy. In the current section the diversity level of EQB method is compared and discussed 
in comparison with BOA method. To evaluate the population diversity level a 2D sphere function is considered as below: 
 

𝑓(𝑥) = 𝑥1
2 + 𝑥2

2  ,    𝑥𝑖𝜖[−10,+10] (6) 
  

The diversity index is defined as follows (Tang et al., 2015): 
 

𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦 (𝑡) =
1

𝑁|𝐿|
∑√∑(𝑥𝑖

𝑗
− �̅�𝑗)

2
𝐷

𝑗=1

𝑁

𝑖=1

 (7) 

 
where, the current step is shown by t, the population number is demonstrated by N, the longest diagonal length of search 

domain is given by L, problem dimension is shown by D, 𝑥
𝑗
 is the ith agent’s  jth component, and 𝑥

𝑗
 is the mean value of all 

agent’s  jth components of the colony. The diversity diagrams for EQB and BOA are plotted in Figure 2. Based on the given 
diagrams BOA has very high diversity level through whole optimization process. However, EQB can achieve required 
convergence as expected for simple and smooth domain of 2D sphere function. This shows that BOA can perform high level 
of exploration but its exploitation behavior is limited, this issue also is shown in the next section via testing the convergence 
property of the method on different types of search domains.  
 

Figure 2. Diversity diagrams for EQB and BOA. (Self-Elaboration). 

 

 

Convergence analysis 
 
In the current section the performance of the proposed EQB is assessed in comparison with its parent methods and some 
other well-stablished techniques. To meet this aim, the different functions with different properties are selected. F5-F10 
functions are picked from CEC2005 database (Suganthan et al., 2005). The formulations and specifications of selected 
functions are given in Table 6-7. To give more insight about the search domain of these functions their 2D schemes are given 
in Figure 3. The convergence history for these functions are given in Figure 3. 
  
For domains of F1 and F3 functions the exploration is the most required search behavior since they have very distinct global 
optimum points (see Figure 3). BOA shows remarkable performance on solving these two examples, this indicates that the 
exploration search behavior of this method works proper. Search domains of functions F4 and F5 contain several number 
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of local minima which challenges the local search ability of the search algorithm. According to the given diagrams for these 
examples (see Figure 3) BOA performance is highly limited on solving these examples. It indicates that exploitation behavior 
of BOA is not in the admissible level. Other examples include shifted and/or rotated complex search spaces which challenge 
both global and local search abilities of any optimization algorithm. Based on the optimization history diagrams given for 
F6-F10 functions BOA is not able to provide a proper efficiency and search performance. 
 
Considering all optimization history diagrams, in EQB method when the global search is required, BOA provides exploration 
behavior, and when the local search is dominant EQA search the high certainty region of the search domain which explored 
so far. Such that, for F13 function, although BOA show very well performance, EQB yields faster convergence. It is notable 
that for this function DSO cannot catch the minimum required accuracy. For F18 function DSO provides a good convergence 
rate in comparison with BOA however still EQB provides better rate. Based on these results EQB can successively combine 
the affirmative exploration and exploitation behaviors of BOA and EQA and put forward an efficient search strategy. 
 

Figure 3. 2D scheme of F11-F20 benchmark functions. (Self-Elaboration). 

   
F11 F12 F13 

   
F14 F15 F16 

   
F17 F18 F19 

 
 F20  
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Table 6. Benchmark functions for convergence test. (Self-Elaboration). 

No Function  Formulation 

F11 Perm  𝑓(𝐗) =∑(∑(𝑗𝑖 + 0.1)

𝐷

𝑖=1

((
𝑥𝑖
𝑗
)
𝑖

− 1))

2
𝐷

𝑖=1

 

F12 Dixon-Price  𝑓(𝐗) = (𝑥1 − 1)
2 +∑𝑖(2𝑥𝑖

2 − 𝑥𝑖−1)
2

𝐷

𝑖=2

 

F13 Ackley  𝑓(𝐗) = −20 exp

(

 −0.2√∑
𝑥𝑖
2

𝐷

𝐷

𝑖=1
)

 − exp (∑cos
(2𝝅𝑥𝑖)

𝐷

𝐷

𝑖=1

) + 20 + 𝑒 

F14 Levy  

𝑓(𝐗) = 

sin2(𝜋𝑤1) +∑(𝑤𝑖 − 1)
2[1 + 10sin2(𝜋𝑤𝑖 + 1)] + (𝑤𝐷 − 1)

2

𝐷−1

𝑖=1

[1 + sin2(2𝜋𝑤𝑑)] 

where, 𝑤𝑖 = 1 +
𝑥𝑖−1

4
   ,    for all 𝑖 = 1, … , 𝐷 

 

F15 
Shifted Rotated High 
Conditioned Elliptic 

 𝑓(𝐗) =∑(106)
𝑖−1
𝐷−1𝑧𝑖

2 − 450

𝐷

𝑖=1

 

F16 
Shifted Schwefel’s Problem 
1.2 with Noise in Fitness 

 𝑓(𝐗) = (∑(∑𝑧𝑗

𝑖

𝑗=1

)

2
𝐷

𝑖=1

) ∗ (1 + 0.4|𝑁(0,1)|) − 450 

F17 Shifted Rosenbrock’s   𝑓(𝐗) = ∑(100(𝑧𝑖
2 − 𝑧𝑖+1)

2 + (𝑧𝑖 − 1)
2) + 390

𝐷−1

𝑖=1

 

F18 Shifted Rotated Rastrigin’s   𝑓(𝐗) =∑(𝑧𝑖
2 − 10 cos(2𝜋𝑧𝑖) + 10) − 330

𝐷

𝑖=1

 

F1 Shifted Rotated Weierstrass  𝑓(𝐗) =∑( ∑ [𝑎𝑘𝑐𝑜𝑠(2𝜋𝑏𝑘(𝑧𝑖 + 0.5))]

𝑘max  

𝑘=0

) − 𝐷 ∑ [𝑎𝑘 cos(2𝜋𝑏𝑘 ∗  0.5)]

𝑘max  

𝑘=0

+ 90

𝐷

𝑖=1

 

F20* Schwefel’s Problem 2.13  

 

𝑓(𝐗) =∑(𝐀𝑖 − 𝐁𝑖(𝑥))
2
− 460

𝐷

𝑖=1

 

𝐀𝑖 =∑(𝑎𝑖𝑗 sin 𝛼𝑗 + 𝑏𝑖𝑗 cos 𝛼𝑗)

𝐷

𝑗=1

 , 𝐁𝑖(𝑥) = ∑(𝑎𝑖𝑗 sin 𝑥𝑗 + 𝑏𝑖𝑗 cos 𝑥𝑗)

𝐷

𝑗=1

 , for 𝑖

= 1,… , 𝐷 
D: dimensions 
A, B are two D*D matrix, aij , bij are integer random numbers in the range [-100,100] 
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Table 7. Properties of the benchmark functions for convergence rate. (Self-Elaboration). 

No Features Range fmin D Accuracy level 

F11 US [-100, 100] 0 50 1.0E−06 

F12 UN [-10, 10] 0 50 1.0E−06 

F13 UN [-100, 100] 0 50 1.0E−06 

F14 UN [-100, 100] 0 50 1.0E−06 

F15 UHNRC [-30, 30] -450 50 1.0E−06 

F16 UHNOC [-5.12, 5.12] -450 50 1.0E−06 

F17 MHNVC [-10, 10] 390 50 1.0E−06 

F18 MHNLC [-600, 600] -330 50 1.0E−06 

F19 MHRNDC [-32, 32] 90 50 1.0E−06 

F20 MHNC [-4, 5] -460 50 1.0E−06 

U: unimodal; M: multimodal; S: separable; N: non-separable; D: dimension; C: scalable; R: rotated; H: shifted; O: noises in fitness; V: very narrow valley from 
local optimum; L: local optima’s number is huge 
D:continuous but differentiable only on a set of points 
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Figure 4. Convergence diagrams for F11-F20 functions. (Self-Elaboration). 

   
F11 F12 F13 
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Complexity analysis 
 
In this section the complexity level of EQB in comparison with other selected techniques is assessed. The complexity is 
evaluated based on the method revealed in (Suganthan et al., 2005). Based on the given formulation a three different 

durations should be calculated as T0, T1 and �̂�2. Such that, T0 is the required time for running the predefined simple loop 
(Suganthan et al., 2005). T1 is defined as required time for 200000 times evaluation of a specific function with certain 
dimension. In the current study it is taken as Sphere function is selected for D=30 and D=50 dimensions. Eventually, T2 is 
defined as the time necessary for complete run of the proposed algorithm (optimization process) for the same function, and 

�̂�2 is the mean time required for five calculated T2. The results for complexity values are given in Tables 8 and 9. Based on 
the given results although EQB have very close complexity with BOA however it is slightly more complex due to calculating 
the weighted agent in some iterations.  
 

Table 8. Complexity computation result for selected algorithms for D=30. (Self-Elaboration). 

Algorithm T0 T1 �̂�2 (�̂�2-T1)/T0 Rank 

FA 1.40E-01 1.9E-01 5.00E+02 3.58E+03 5 
MBO 1.40E-01 1.9E-01 6.00E+02 4.32E+03 6 
DSO 1.40E-01 1.9E-01 6.67E+02 4.71E+03 7 
IMO 1.40E-01 1.9E-01 3.95E+02 2.83E+03 1 
iPSO 1.40E-01 1.9E-01 4.85E+02 3.46E+03 4 
BOA 1.40E-01 1.9E-01 4.60E+02 3.28E+03 2 
EQB 1.40E-01 1.9E-01 4.61E+02 3.29E+03 3 

 
Table 9. Complexity computation result for selected algorithms for D=50. (Self-Elaboration). 

Algorithm T0 T1 �̂�2 (�̂�2-T1)/T0 Rank 

FA 1.40E-01 3.05E-01 5.70E+02 4.07E+03 5 
MBO 1.40E-01 3.05E-01 6.85E+02 4.89E+03 6 
DSO 1.40E-01 3.05E-01 7.10E+02 5.07E+03 7 
IMO 1.40E-01 3.05E-01 4.05E+02 2.89E+03 1 
iPSO 1.40E-01 3.05E-01 5.20E+02 3.71E+03 4 
BOA 1.40E-01 3.05E-01 4.98E+02 3.55E+03 2 
EQB 1.40E-01 3.05E-01 5.01E+02 3.58E+03 3 

 
Testing EQB on real world problems 
 
In this section the search performance of proposed EQB is evaluated on handling the constrained engineering problems. To 
handle the constraints of problems the penalty approach is applied. The formulation of penalty function is as below: 
 
𝑓𝑝𝑒𝑛𝑒𝑙𝑖𝑧𝑒𝑑(𝐗) = (1 + 𝜀1𝑣)

𝜀2 × 𝑓(𝐗) 

𝑣 =∑max{0, 𝑔𝑖(𝑿)}

𝑞

𝑖=1

 
(8) 

 
in which, 𝑓𝑝𝑒𝑛𝑒𝑙𝑖𝑧𝑒𝑑  indicates the problem’s penalized objective function and 𝑓(𝐗) is the value of non-penalized objective 

function and 𝑔𝑖(𝑿) returns violation of ith constraint. To provide more adaptive scheme, 𝜀1 and 𝜀2 as the tuning terms are 
respectively taken as 1 and 1.5 at the start of the process while linearly increased up to 6 (Mortazavi, 2019c). Initially Two 
mechanical cases and finally a structural problem are investigated in this section. 
 
Design of welded beam problem 
 
As shown in Figure 5 the welded beam problem is studied as the constrained engineering optimization problem. The total 
cost of the welding mechanism is considered as the objective function of this problem. This function should be minimized 
concerning seven different linear and non-linear constraints. Required terms on these limitations are defined as the 
deflection (δ), shear stress (τ), normal stress (σ). Design variables of this problem are taken into account as the welding 
part’s (shown with yellow color) length (l) and height (h) and cross-section specifications as width (b) and thickness (t). The 
corresponding objective function and its constraints and required terms are given in Eq. (9). The archived results for tested 
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method are tabulated in Table 10. Based on the given results EQB outperforms other selected methods and also its parent 
methods (i.e. BOA) in both accuracy and required objective function evaluations (OFEs). This shows that the proposed EQB 
can efficiently combine the affirmative search abilities of its parental methods. According to statistical outcomes, after iPSO 
method EQB shows the highest stability in optimization process. 
 

Figure 5. The welded beam problem. (Self-Elaboration). 

 
 

To minimize  
cost (𝐗) = 1.10471 𝑥1

2𝑥2 + 0.04811 𝑥3𝑥4(14 + 𝑥2) 
𝐗 = {𝑥1, 𝑥2, 𝑥3, 𝑥4} 

(9) 

Subjected to 
𝑔1(𝑥) = 𝜏(𝑥) − 𝜏𝑚𝑎𝑥 ≤ 0 
𝑔2(𝑥) = 𝜎(𝑥) − 𝜎𝑚𝑎𝑥 ≤ 0 
𝑔3(𝑥) = 𝑥1 − 𝑥4 ≤ 0 
𝑔4(𝑥) = 0.10471 𝑥1

2 + 0.04811 𝑥3𝑥4(14 + 𝑥2) − 5 ≤ 0 
𝑔5(𝑥) = 0.125 − 𝑥1 ≤ 0 
𝑔6(𝑥) = 𝛿(𝑥) − 𝛿𝑚𝑎𝑥 ≤ 0 
𝑔7(𝑥) = 𝑝 − 𝑝𝑐(𝑥) ≤ 0 
0.1 ≤ 𝑥1 ≤ 2        0.1 ≤ 𝑥2 ≤ 10        0.1 ≤ 𝑥3 ≤ 10        0.1 ≤ 𝑥4 ≤ 2 

(9.1) 

where 

𝜏(𝑥) = √(𝜏′)2 + 2𝜏′𝜏"
𝑥2
2𝑅

+ (𝜏")2 

𝜏′ =
𝑃

√2𝑥1𝑥2
         𝜏" =

𝑀𝑅

𝐽
         𝑀 = 𝑃 (𝐿 +

𝑥2
2
) 

𝑅 = √
𝑥2
2

4
+ (

𝑥1 + 𝑥3
2

)
2

            𝐽 = 2 {√2𝑥1𝑥2 [
𝑥2
2

12
+ (

𝑥1 + 𝑥3
2

)
2

]} 

𝜎(𝑥) =
6𝑃𝐿

𝑥4𝑥3
2           𝛿(𝑥) =

4𝑃𝐿3

𝐸𝑥3
3𝑥4

         𝑃𝑐(𝑥) =
4.013√𝐸(𝑥2

3𝑥4
6/36)

𝐿2
(1 −

𝑥3
2𝐿
√
𝐸

4𝐺
) 

(9.2) 
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Table 10. The results for the welded beam problem. (Self-Elaboration). 

Variables FA MBO DSO IMO iPSO BOA EQB 

x1(h) 0.202369 0.206428 0.199742 0.234974 0.205729 0.248729 0.205730 

x2(l) 3.544214 3.461341 3.612060 2.94398 3.470493 2.95378 3.470489 

x3(t) 9.048210 9.021457 9.037500 9.011408 9.036626 8.362973 9.036624 

x4(b) 0.205723 0.206422 0.206082 0.206889 0.205729 0.249008 0.205730 

f(X)        

Best 1.728024 1.727353 1.737297 2.174305 1.724857 1.900415 1.724856 

Worst 1.782143 1.800025 1.994651 2.975961 1.724853 3.854357 1.951018 

Mean 1.748831 1.729874 1.813290 2.573985 1.724853 2.559287 1.824997 

Std. 0.013 0.005898 0.092100 0.589632 6.9E-019 1.983998 0.024100 

OFEs 47850 12850 11680 1435 1240 8865 1165 

 

Design of 582-bar truss tower 
 
The spatial 582-bar spatial tower shown in Figure 6 is studied as the last test case. By considering the symmetry of the tower 
the elements are categorized into 32 distinct groups. The modulus of elasticity and yielding stress are 29000 ksi and 36 ksi, 
respectively.  The structure is designed for its minimum weight under the loading condition of 1.12, 1.12 and -6.75 kips in x, 
y and z directions on all nodes, respectively. The size variables are selected from a discrete set of 140 W-shape profiles 
shown in Table 11. These sections are selected from pre-defined profiles given in AISC-ASD9 code, so the upper and lower 
boundaries for cross-sectional areas are limited to 6.16 in2 (39.74 cm2) and 215.0 in2 (1387.09 cm2), respectively.  
Displacements for all of the nodes must be less than 8 cm (3.15 in). Allowable tress limitation of the elements can be 
calculated accordıng to the AISC-ASD89 standard as below: 
 

{
𝜎𝑖
+ = 0.6𝐹𝑦          𝜎𝑖 ≥ 0             

𝜎𝑖
−                          𝜎𝑖 < 0             

      
(10) 
 

 
where 𝜎𝑖

+ indicates the allowable tensile stress and 𝜎𝑖
− indicates the allowable compressive stress. Also, σi- as a function of 

the slenderness ratio is defined as below: 
 

𝜎𝑖
− =

{
 
 

 
 [(1 −

𝜆𝑖
2

2𝐶𝑐
2
)𝐹𝑦 (

5

3
+
3𝜆𝑖
8𝐶𝑐

−
𝜆𝑖
3

8𝐶𝑐
3
)⁄ ]                                     𝑓𝑜𝑟 𝜆𝑖 < 𝐶𝑐 

12𝜋2𝐸

23𝜆𝑖
2                                                                                      𝑓𝑜𝑟 𝜆𝑖 ≥ 𝐶𝑐

 

(11) 
 

 
in which, Cc is the slenderness ratio, and it is computed as below: 
 

𝐶𝑐 = √
2𝜋2𝐸

𝐹𝑦
 

(12) 
 

 
According to the AISC-ASD code’ provisions the maximum allowable slenderness ratio are taken as 200 and 300 for 
compressive and tensile elements, respectively. Based on this code, the mentioned constraint can be stated as below: 
 

𝜆𝑖 =
𝑘𝑖𝑙𝑖
𝑟𝑖

≤ {
300 𝑓𝑜𝑟 𝑡𝑒𝑛𝑠𝑖𝑜𝑛 𝑚𝑒𝑚𝑏𝑒𝑟𝑠          
 200 𝑓𝑜𝑟 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑚𝑒𝑚𝑏𝑒𝑟𝑠

 
(13) 
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where λi is slenderness ratio of the ith member; li and ri are respectively the element length and the radius of gyration. In 
the condition of not satisfying the constraint on the slenderness ratio of compression elements, the allowable stress must 

not exceed the value achieved by (
12𝜋2𝐸

23𝜆𝑖
2 ) (AISC-ASD, 1989).  

 
The attained optimal results are comparatively tabulated in Table 12. According to the addressed outcomes EQB can find 
the lightest structure. Based on reported results the quadratic phase by improving the exploitation search behavior of the 
proposed algorithm considerably reduces the inefficient iteration and improves the convergence rate and accuracy of the 
optimal solution. Considering the complexity of the discrete search space of the current example added proposed auxiliary 
enhanced quadratic approach significantly increase the efficiency of algorithm specially in comparison with its parent 
method (i.e. BOA) in solving problems with discrete variables and constrained search domains.  
 

Table 11. W-shape profile taken from AISC-ASD9. (Self-Elaboration). 

W27×178 W21×122 W18×50 W14×455 W14×74 W12×136 W10×77 
W27×161 W21×111 W18×46 W14×426 W14×68 W12×120 W10×68 
W27×146 W21×101 W18×40 W14×398 W14×61 W12×106 W10×60 
W27×114 W21×93 W18×35 W14×370 W14×53 W12×96 W10×54 
W27×102 W21×83 W16×100 W14×342 W14×48 W12×87 W10×49 
W27×94 W21×73 W16×89 W14×311 W14×43 W12×79 W10×45 
W27×84 W21×68 W16×77 W14×283 W14×38 W12×72 W10×39 
W24×162 W21×62 W16×67 W14×257 W14×34 W12×65 W10×33 
W24×146 W21×57 W16×57 W14×233 W14×30 W12×58 W10×30 
W24×131 W21×50 W16×50 W14×211 W14×26 W12×53 W10×26 
W24×117 W21×44 W16×45 W14×193 W14×22 W12×50 W10×22 
W24×104 W18×119 W16×40 W14×176 W12×336 W12×45 W8×67 
W24×94 W18×106 W16×36 W14×159 W12×305 W12×40 W8×58 
W24×84 W18×97 W16×31 W14×145 W12×279 W12×35 W8×48 
W24×76 W18×86 W16×26 W14×132 W12×252 W12×30 W8×40 
W24×68 W18×76 W14×730 W14×120 W12×230 W12×26 W8×35 
W24×62 W18×71 W14×665 W14×109 W12×210 W12×22 W8×31 
W24×55 W18×65 W14×605 W14×99 W12×190 W10×112 W8×28 
W21×147 W18×60 W14×550 W14×90 W12×170 W10×100 W8×24 
W21×132 W18×55 W14×500 W14×82 W12×152 W10×88 W8×21 
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Figure 6. The 582-bar truss tower structure. (Self-Elaboration). 

 

 
b) 3D view 

 

a) Side view and Grouping c) Top view 
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Table 12. Comparison of optimal designs for the 582-bar truss tower. (Self-Elaboration). 

Design variables 
Optimal cross-sectional areas 

FA MBO DSO TLBO iPSO BOA EQB 

A1 W8×21 W8 × 21 W8×24 W8 × 24 W8 × 21 W8×21 W8 × 21 

A2 W12×79 W24 × 76 W12×72 W24 × 84 W8 × 21 W12×79 W24 × 84 

A3 W8×28 W8×28 W8×28 W8 × 21 W8 × 21 W8×24 W8 × 21 

A4 W10×60 W12 × 65 W12×58 W24 × 62 W21 × 73 W10×60 W24 × 62 

A5 W8×24 W8 × 21 W8×24 W8 × 21 W12 × 53 W8×24 W8 × 21 

A6 W8×21 W8 × 21 W8×24 W8 × 21 W8 × 21 W8×21 W8 × 21 

A7 W10×68 W10 × 54 W10×49 W16 × 57 W8 × 21 W8×48  W16 × 57 

A8 W8×24 W8 × 21 W8×24 W8 × 21 W8 × 21 W8×24 W8 × 21 

A9 W8×21 W8 × 21 W8×24 W8 × 21 W8 × 21 W8×21 W8 × 21 

A10 W14×48 W12 × 50 W12×40 W12 × 53 W8 × 21 W10×45 W12 × 53 

A11 W12×26 W8 × 21 W12×30 W8 × 21 W18 × 76 W8×24 W8 × 21 

A12 W21×62 W10 × 68 W12×72 W10 × 77 W24 × 62 W10×68 W10 × 77 

A13 W18×76 W24 × 76 W18×76 W21 × 83 W10 × 49 W14×74 W21 × 83 

A14 W12×53 W14 × 53 W10×49 W21 × 57 W10 × 49 W8×48 W21 × 57 

A15 W14×61 W12 × 79 W14×82 W18 × 76 W12 × 79 W18×76 W18 × 76 

A16 W8×40 W8 × 21 W8×31 W8 × 21 W21 × 62 W8×31 W8 × 21 

A17 W10×54 W12 × 65 W14×61 W10 × 22 W14 × 43 W8×21 W10 × 22 

A18 W12×26 W8 × 21 W8×24 W18 × 55 W16 × 26 W16×67 W18 × 55 

A19 W8×21 W8 × 21 W8×21 W8 × 21 W8 × 21 W8×24 W8 × 21 

A20 W14×43 W12 × 45 W12×40 W8 × 21 W8 × 21 W8 × 21 W8 × 21 

A21 W8×24 W8 × 21 W8×24 W14 × 30 W8 × 21 W8×40 W14 × 30 

A22 W8×21 W8 × 21 W14×22 W8 × 21 W8 × 24 W8×24 W8 × 21 

A23 W10×22 W16 × 26 W8×31 W8 × 21 W8 × 24 W8 × 21 W8 × 21 

A24 W8×24 W8 × 21 W8×28 W8 × 21 W8 × 21 W10×22 W8 × 21 

A25 W8 × 21 W8 × 21 W8 × 21 W8 × 21 W16 × 67 W8×24 W8 × 21 

A26 W8 × 21 W8 × 21 W8 × 21 W8 × 21 W8 × 31 W8 × 21 W8 × 21 

A27 W8×24 W8 × 21 W8×24 W10 × 22 W8 × 24 W8 × 21 W10 × 22 

A28 W8 × 21 W8 × 21 W8×28 W8 × 21 W8 × 21 W8×24 W8 × 21 

A29 W8 × 21 W8 × 21 W16×36 W8 × 21 W8 × 21 W8 × 21 W8 × 21 

A30 W6×25 W8 × 21 W8×24 W8 × 31 W8 × 21 W8 × 21 W8 × 31 

A31 W10×33 W8 × 21 W8 × 21 W8 × 21 W8 × 21 W8×24 W8 × 21 

A32 W8×28 W8 × 21 W8×24 W12 × 22 W8 × 28 W8×24 W12 × 22 

Best vol. (m3) 21.0376 20.5688 22.0607 20.3410 20.9464 22.3958 20.3042 

Mean vol. (m3) 21.9876 21.6831 22.6542 20.6542 21.3241 22.9834 20.6018 
Worst vol. (m3) 22.0981 21.9101 22.7901 20.7761 21.4782 23.1472 20.6955 
Std. (m3) 1.07 0.82 0.51 0.37 0.99 0.72 0.36 
NSAs 6,450 12,030 15,420 14,940 2,370 17,500 6,300 

 

Conclusions 
 
The current study deals with introducing an efficient exploitation search pattern by defining a weighted agent and making 
a quadratic approximation search around this agent. Since the weighted agent is the gravity center of the whole population, 
it permanently includes the all population information in the search process. The proposed pattern is named enhanced 
quadratic approximation (EQA). Then, the EQB is combined with the effective exploration search behavior of the BOA 
approach for introducing a new hybrid search algorithm named enhanced quadratic approximation integrated with butterfly 
optimization (EQB). The search performance of the EQB, in comparison with some other well-established techniques, is 
evaluated on handling both constrained and unconstrained mathematical and structural optimization problems. Also, the 
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accuracy level, diversity index, convergence rate and complexity level of the EQB algorithm are assessed and discussed in 
details. Based on the achieved results there are three significant acquisitions can be mentioned for the EQB method. 
  
First, the proposed hybrid algorithm by incorporating the weighted agent in the search process dynamically adjusted the 

diversity level of the population and decreases the probability of premature convergences. Second, using the EQA strategy 

improves the local search of the algorithm and makes it able to perform a more efficient search in the vicinity of the 

promising region of the search domain and subsequently raises the accuracy level of the given solution. Third, for the sake 

of the applied quadratic local search paradigm, the number of ineffective intentions (i.e., iterations without improving the 

solution) is considerably reduced, and the convergence rate of the algorithm is considerably speeded up. Consequently, 

acquired numeric outcomes reveal that the EQB provides competitive performance in handling mathematical and structural 

problems with discrete and continuous decision variables. 
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