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Abstract 
Completion of the activities within optimal time and cost plays a significant role in construction projects. Recently, project managers have to decrease 
the total durations and costs of the projects more than before due to the competitive environment. Mostly, decision makers usually seek different 
alternatives which reduce time and cost. As well as being one of the most major topics of construction management, this problem called time-cost 
trade-off (TCTO) which is extremely difficult to solve with traditional mathematical methods. In recent years, metaheuristic algorithms are outstanding 
methods in this field due to their flexible and adaptable structure. This paper presents a new algorithm called F-PSO which consists of hybridizing 
Firefly Algorithm (FA) with Particle Swarm Optimization (PSO). In this method, the problem is modelled with various execution modes to select the 
optimal one for each activity. The applicability and validity of the proposed method is confirmed by performing 18-activity project as a benchmark 
problem. Comparison of numerical results with different metaheuristic algorithms demonstrates the effectiveness and efficiency of F-PSO with regard 
to optimality of time and cost outcomes. 
 
Key words: Hybrid algorithm, metaheuristic method, project planning, time-cost trade-off. 

 
Resumen 
La finalización de las actividades en un tiempo y costo óptimos desempeña un papel importante en los proyectos de construcción. Recientemente, 
los gerentes de proyecto tienen que disminuir la duración total y los costos de los proyectos más que antes debido al entorno competitivo. En general, 
quienes toman las decisiones generalmente buscan diferentes alternativas que reduzcan el tiempo y el costo. Además de ser uno de los temas más 
importantes de la gestión de la construcción, este problema se llama compensación - tiempo-costo (TCTO), que es extremadamente difícil de resolver 
con métodos matemáticos tradicionales. En los últimos años, los algoritmos metaheurísticos son métodos sobresalientes en este campo debido a su 
estructura flexible y adaptable. Este artículo presenta un nuevo algoritmo llamado F-PSO que consiste en hibridar el Algoritmo Firefly (FA) con la 
Optimización de Enjambre de Partículas (PSO). En este método, el problema se modela con varios modos de ejecución para seleccionar el óptimo 
para cada actividad. La aplicabilidad y validez del método propuesto se confirma realizando un proyecto de 18 actividades como un problema de 
referencia. La comparación de resultados numéricos con diferentes algoritmos metaheurísticos demuestra la efectividad y eficiencia de F-PSO con 
respecto a la optimización de los resultados de tiempo y costo. 
 
Palabras clave: Algoritmo híbrido, método metaheurístico, planificación de proyectos, compensación de tiempo-costo. 

 

Introduction 
 
Generally, all activities are considered with normal durations in traditional project planning (Klerides & 
Hadjiconstantinou, 2015). However, the decision makers sometimes have to complete the project earlier due to various 
reasons such as unforeseen delays, incentive contracts, imposed deadlines, contract commitments, overhead costs and 
pressure to move resources to other project. For this purpose, some of the activities must be accelerated to reduce the 
total project duration. This acceleration called crashing which can be achieved by additional resources or new 
technological changes, but they always cause increases in cost. Undoubtedly, the duration has a strong relation with 
the resource and they act each other inversely proportional. On the other hand, different time-cost relationships can 
occur depending on the cost components of the project. The most traditional form of time-cost relationship is expressed 
as linear. Linear time-cost relationship is a conventional deterministic model for defining the time-cost problems and 
numerous studies have been presented in the literature formerly. Kelley (1961), Fulkerson (1961), Siemens (1971), 
Salem & Elmaghraby (1994), Hendrickson & Au (1989), Tareghian & Taheri (2006), and Chen & Tsai (2011) put forward 
linear approaches for time-cost problems.  
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The common point of these studies was that the relationship between time and cost of an activity was assumed as a 
linear function and the main purpose was to schedule the activities for minimizing the project cost, at that time 
(Vanhoucke & Debels, 2007). Despite the fact that the linear approach is simply applicable as an exact method, it does 
not reflect the real-life problems precisely enough. Also exact methods can only optimize single-objective problems. 
However, if the optimization of time and cost is requested simultaneously, these methods fail. This optimization 
problem is known as time-cost trade-off (TCTO) problem in the literature (Hegazy, 1999). The concept of TCTO has been 
raised with the multi execution modes which include different time-cost alternatives for activities. This type of TCTO 
models called discrete optimization has combination of discrete points corresponding to each time-cost set of the 
activities. In project planning, the activities which have at least two modes are considered as multimodal optimization 
problems. The aim of TCTO is to find the best alternative solution by providing the optimal total duration and cost of 
the project. 
 
Our intent with this paper is to present the applicability of an alternative hybrid intelligent search method for solving 
the problem of the minimization of total project cost and duration, when discrete time-cost combinations are available 
on the activities of a project. This paper is different from the previous studies with respect to proposing a novel method 
for the solution. Moreover, presenting a Pareto front of results to decision makers gives them the opportunity to select 
the better solution due to project limitations and make the decision making procedure more flexible. The mathematical 
model of TCTO is described considering multimodal and multi-objective optimization requirements. Also a novel hybrid 
algorithm (Firefly-Particle Swarm Optimization, abbr. F-PSO) is proposed to solve TCTO problem. F-PSO is based on PSO 
combining with FA approach for TCTO problems in construction projects. In this algorithm, PSO searches the solution 
space globally when FA focuses on finding optimal solutions. Thus, the advantages of both nature inspired algorithms 
are combined. Furthermore, the proposed F-PSO method is tested on 18-activity TCTO problem which is one of the most 
well-known problems derived from the literature. For demonstrating the performance of F-PSO, the obtained numerical 
solutions are compared with other studies conducted with different metaheuristic methods existing in the literature.  
 
The remaining content of this paper is organized as follows: TCTO is introduced and the mathematical model is explained 
in the section of Description of the Problem. The related works which apply metaheuristic methods on TCTO are 
mentioned in the section of State of Art. In the section of Methodology, Firefly Algorithm (FA) and Particle Swarm 
Optimization (PSO) are summarized and F-PSO is presented. Also, application of F-PSO on the case example is given in 
the same section. In the section of Results, the computational results are discussed. Finally, conclusions and directions 
of future work are mentioned in the section of Conclusions. 

 

Description of the Problem 
 
TCTO is a multi-objective optimization which aims to minimize both time and cost. The optimization brings the optimal 
time-cost sets which constitute Pareto front. Pareto front was first formulated by Pareto (1906) as the commonly 
accepted tool for evaluating potential solutions. Pareto front is a set of non-dominated solutions being chosen as 
optimal if no objective can be improved without sacrificing at least one other objective (Fan, You, & Li, 2013). Thus, the 
decision maker can find the most appropriate time-cost set, which is undetectable by conventional methods, according 
to subjective preferences. 
 
The mathematical model of TCTO problem given in the below is adapted from a previous study which is conducted by 
the first author of this paper (Albayrak, 2017). The mathematical model is described by Equations (1- 4) as constraints 
and Eq. (5) and (6) as objective functions. In Equations (1 - 6), ct, tt, cij and xij represent total cost, total duration, cost of 
the jth mode for ith activity, assignment of the jth mode for ith activity respectively.  T, mn, n, Tij and Tmax represents starting 
time, mode alternatives, activity number, duration of jth mode of ith activity and maximum completion time respectively. 
According to the Eq. (1), the project starts at time 0. Eq. (2) states that, the sum of the starting time of the last activity 
with duration should be less than or equal to the maximum completion time of the project. According to Eq. (3), the 
sum of the starting time of a predecessor activity and the duration of jth mode should be less than or equal to starting 
time of the successor activity. The precedence constraints must not be violated. The last constraint Eq. (4) expresses 
that only one mode must be assigned for each activity. Accordingly, xij is a binary variable which takes the value of 0-1.  
 
Constraint functions: 
𝑇1 = 0;                                                                                                                       (1) 

𝑇𝑛 + ∑ 𝑇𝑛𝑗 . 𝑥𝑛𝑗 ≤ 𝑇𝑚𝑎𝑥
𝑚𝑛
𝑗=1  ;                                                                                              (2) 

𝑇𝑎 + ∑ 𝑇𝑎𝑗 .
𝑚𝑎
𝑗=1 𝑥𝑎𝑗 ≤ 𝑇𝑏 ;  𝑎 → 𝑏 for all predecessors a,b=1,…,n;                           (3) 

∑ ∑ 𝑥𝑖𝑗 = 1
𝑚𝑖
𝑗=1

𝑛
𝑖=1 ;                                                                                                   (4) 
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Objective functions: 

𝑀𝑖𝑛 𝑐𝑡 = ∑ ∑ 𝑐𝑖𝑗
𝑚𝑖
𝑗=1 𝑥𝑖𝑗

𝑛
𝑖=1                                                                                      (5) 

𝑀𝑖𝑛 𝑡𝑡 = [𝑇𝑛 + ∑ (𝑇𝑖𝑗 . 𝑥𝑖𝑗)
𝑚𝑛
𝑗=1 ]                                                                                   (6) 

 
First objective function Eq. (5) aims to minimize total project cost and second objective function Eq. (6) aims to minimize 
total project duration. 
 

State of the Art 
 
The time–cost trade-off problem has been extensively studied decades ago under the assumption of continuous time-
cost relationships. On the contrary, the literature for the case where the time-cost modes are defined at discrete points 
(representing distinct alternatives) is relatively recent, despite the fact that the discrete time-cost modes are considered 
to be a more realistic model of real projects. Undoubtedly, the problem has gained considerable attention. Because 
mathematical structure of the problem includes complicated formulation and, thus, it is very difficult to obtain optimal 
solutions efficiently. De, Dunne, Ghosh, & Wells (1997) and also Deineko & Woeginger (2001), showed that this problem 
belongs to NP-hard (non-deterministic polynomial time) problem. Due to unlikely existence of any polynomial algorithm 
to solve this problem optimally, the efforts have turned to finding the approximation and heuristics methods. The 
metaheuristic algorithms, which include a number of different methods, have an important role in this field because of 
their widespread application area than conventional methods such as critical path method and linear programming.  
 
Li & Love (1997), Feng, Liu, & Burns (1997; 2000), Leu & Yang (1999) and (Hegazy, 1999) are the initiative studies in the 
literature in terms of proposing metaheuristic method based on Genetic Algorithm (GA) to solve TCTO.  Thereafter TCTO 
has been extensively studied and many different algorithms have been suggested by many researchers. New powerful 
metaheuristic algorithms, such as Simulated Annealing, Tabu Search, Ant Colony Algorithm (ACO), Particle Swarm 
Optimization and Shuffled Frog Leaping Algorithm, have contributed to further development of optimization. The large 
number of metaheuristics proposed to solve the problem, as well as the values to be decided for many parameters of a 
metaheuristic, impose their evaluation with regard to their time efficiency and the quality of the obtained solutions. 
The studies related to TCTO solving with metaheuristic algorithms are as follows mainly: Elbeltagi, Hegazy, & Grierson 
(2005) presented five evolutionary-based optimization algorithms with comparison. Tareghian & Taheri (2007) 
introduced the electromagnetic scatter search algorithm for discrete TCTO problem. Huang, Deng, & Zhang (2008) and 
Ng & Zhang (2008) proposed ACO. Eshtehardian, Afshar, & Abbasnia (2009) presented a fuzzy multi-objective GA 
approach for uncertain environment conditions. Geem (2010) applied a Harmony Search (HS) algorithm to solve time-
cost trade-off problems. The objective is to minimize total cost, which consists of direct cost and time related indirect 
cost. Mokhtari, Baradaran Kazemzadeh, & Salmasnia (2011) applied the ant colony system to the multimodal discrete 
TCTO problem with normal distribution of activity time values. Sonmez & Bettemir (2012) proposed a new hybrid 
algorithm using Simulated Annealing, Quantum Based Simulated Annealing and GA. Cheng & Tran (2014) proposed a 
novel approach by introducing their two-phase differential evolution model which was able to successfully reflect both 
time-cost effects and resource constraints. Prascevic & Prascevic (2014) applied PSO method for solving time-cost 
optimization, and developed for that purpose an appropriate computer programme. Lee, Yi, Lee, & Arditi (2015) used 
the existing data from the project schedules for each individual task to find optimal set of parameters for GA as 
Advanced Stochastic Time-Cost Tradeoff (ASTCT) method to solve TCTO problem. Ashuri & Tavakolan (2015) considered 
the Pareto front optimization of resources along with the time and cost and presented a Shuffled Frog Leaping 
Algorithm. Pathak & Srivastava (2015) developed a new technique for project planners for TCTO in fuzzy environment. 
Kaveh, Khanzadi, Alipour, & Naraky (2015) showed that two new metaheuristic algorithms, Charged System Search (CSS) 
and Colliding Body Optimization (CBO), are utilized for solving this problem. The results show that both of these 
algorithms find reasonable solutions; however, CBO could find the result in a less computational time having a better 
quality. Shen, Hassani, & Shi (2016) considered the problem with Coub-Douglas production function and hybrid GA. 
Hou, Zhao, Wu, Moon, & Wang (2017) formulated a FA to target the optimal combination of the project makespan (start 
time, finish time) and execution mode of each project activity by using a series of unique mathematical models. Elloumi, 
Fortemps, & Loukil (2017) developed a novel evolutionary algorithm for the problem under mode change disruption. 
Zheng & Zhong (2017) presented hybrid GA for TCTO problem considering the environmental impact. He, He, Liu, & 
Wang (2017) suggested Variable Neighbourhood Search and Tabu Search for TCTO problem to minimize the maximal 
cash flow gap. 
 
On the other hand, the researchers who studied multi objective optimization problems have focused on the hybrid 
metaheuristic methods. Mehdizadeh, Hajipour, & Mohammadizadeh (2015) investigated a multi-item capacitated lot-
sizing problem. They develop a bi-objective mathematical programming model with two conflicting objectives. They 
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propose two novel Pareto-based multi-objective metaheuristic algorithms called Multi-objective Vibration Damping 
Optimization and the Non-dominated Ranking GA. Alaghebandha, Hajipour, & Hemmati (2017) studied on the 
formulation of a sequencing problem with the dual goals of varying the parts utilization and varying the workload which 
are typically inversely correlated with each other, and therefore the simultaneous optimization of both is challenging. 
Owing to the NP-hardness of the problem, they introduce a discrete PSO algorithm, memetic algorithm, Weighted Sum 
Multi-objective GA and Non-dominated Sorting GA to solve problem where these objectives are to be optimized 
simultaneously. 

 

Methodology 
Metaheuristic Methods 
 
The mathematical complexity of TCTO problem is directly affected by the size of the project network. In other words, 
the complexity of the problem grows exponentially as the number of the activities. Therefore the problem of TCTO is 
strongly NP-hard which means that TCTO cannot be solved with deterministic solution methods (Deineko & Woeginger, 
2001). 
 
Recently, TCTO problems have been solved using metaheuristic methods. Metaheuristic methods can be useful and 

effective especially when a problem is difficult to solve with exact methods (Sörensen, Sevaux, & Glover, 2018). They 
are also preferred frequently when the research field is large and complicated. Also, achieving the approximate results 
in a short time provides sufficient accuracy. These algorithms give quite reasonable solutions, but do not guarantee 
exactly optimum results (Yang, Deb, & Fong, 2014). 
 
Hybrid optimization technique is a successful combination of metaheuristic algorithm with another optimization 
algorithm that can display a more robust behavior and exhibit greater flexibility against complex and difficult problems 
(Blum, Aguilera, Roli, & Sampels, 2008). In this study, integration of these two swarm intelligence metaheuristics is 
aimed for solving TCTO problem. The metaheuristics, PSO and FA have recently proved to be successful approaches to 
solve complex optimization problems using swarm intelligence. PSO is a powerful optimization technique for solving 
multimodal discrete optimization problems. Similarly, FA that imitates flashing behavior of fireflies is known to be 
efficient and robust for solution of combinatorial optimization problems (Shelokar, Siarry, Jayaraman, & Kulkarni, 2007).  
 
Recently, hybridizing local search strategies with PSO and FA has attracted more attentions, and the experimental 
results verify the promising comprehensive performance, including faster convergence speed and higher solution 
quality, of the hybrid algorithms (Li, Yang, & Nguyen, 2012; Huang, Liu, Su, & Yang, 2013). Meanwhile, detecting 
strategies (Xia, Liu, & Hu, 2014) and opposition-based learning (OBL) strategies (Yu, Zhu, Ma, & Mao, 2015) are also 
introduced to help the population to jump out of locally optimal solutions. Extensive experimental results manifest that 
the comprehensive performance of a hybrid algorithm can be dramatically improved if various merits within different 
algorithms/strategies are fully utilized by a proper integration mechanism (Xia, Gui, He, Xie, Wei, Xing, Wu, & Tang, 
2018). 
 
The explanatory information about the characteristics and principles of FA and PSO is mentioned in the following 
subsections in order to make the novel hybrid method F-PSO more comprehensible. 
 

Firefly Algorithm (FA) 
 
FA is a relatively new nature-inspired optimization method that was first proposed by Yang (2010). As a stochastic 
metaheuristic algorithm, FA incorporates randomness into a search process (Fister, Yang, Brest, & Fister, 2014). Even 
though FA is similar to PSO, it has proved to be much simpler in algorithm implementation (Kora & Rama Krishna, 2016). 
On the other hand, the method has proved effective in solving multimodal optimization problems (Yang & Wang, 2016).  
 
According to FA process, some idealized conditions are adopted to search an optimal solution. These conditions are as 
follows: 

 The fireflies are attracted by other fireflies according to their brightness and distance between them.  

 The attractiveness between two firefly colonies is proportionally increased with the brightness.  

 The brightness of a firefly is associated with objectives and if there is no firefly brighter than the other, that firefly 
will update. 

 
In FA, it is assumed that there is a group of glowing fireflies. The attractiveness and the variation of the light intensity 
are the most important factors to be considered to formulate the behavior of the fireflies. Here, the light intensity I is 
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proportional to the objective function of the problem desired to be optimized.  The brightness of a firefly depends on 
the intensity of light emitted by the firefly. The light intensity I varies with distance r which is expressed by the following 
Eq. (7). 
 

I(𝑟) = I0𝑒−𝛾𝑟2                                                     (7) 
 
where I0 denotes the intensity of the light at the source, and γ is a fixed light absorption coefficient .The distance 𝑟  
depends on the attractiveness which is calculated according to the Eq. (8). 
 

𝛽 (𝑟) = 𝛽0𝑒−𝛾𝑟2                          (8) 
 
where 𝛽0 is the largest attraction. All fireflies have a unique attractiveness 𝛽, which indicates the ability to attract other 
fireflies. The attractiveness is related to the distance factor 𝑟𝑖𝑗 at locations s𝑖 and s𝑗, and between the two corresponding 
fireflies, 𝑖 and 𝑗 are given by Eq. (9). 
 

𝑟𝑖𝑗 = ǁ s𝑖- sj ǁ = √∑ (𝑠𝑖𝑘 − 𝑠𝑗𝑘)
2𝑑

𝑘=1                        (9) 

 
where sik is the k-th element of the ith firefly position within the search space. Each firefly i move to another more 
attractive firefly j and the movement is computed as in the Eq. (10). 
 

sj =si + 𝛽0𝑒−𝛾𝑟𝑖𝑗
2 (s𝑗 − s𝑖) + α(𝑟𝑎𝑛𝑑 − 

1

2
)                  α ϵ [0, 1] (10) 

 
Eq. (10) consists of three terms. The first term of the equation shows the position of the firefly i. The second term 
demonstrates to the attractiveness, while the third term depends on the randomized move of the firefly i within the 
search space. This term consists of the randomized parameter α, and randomly selected number between the interval 
[0, 1] as rand adopted from a Gaussian distribution. The process of FA is demonstrated on a flowchart in Figure 1. 
 

Figure 1. Flowchart of FA. Source: Self Elaboration.  
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Particle Swarm Optimization (PSO) 
 
Particle swarm optimization (PSO) is a type of swarm based algorithm inspired by nature. On the basis of such 
algorithms, living community called swarm has movements which are related to psychosocial factors. In PSO, each 
individual is called a particle, and the interactions of particles create the swarm intelligence. The particles of a 
community are better than the individual situation in terms of their observative and cognitive abilities. This status is 
particularly seen in bees, birds, fish and even bacteria. In behaviors such as hunting, migrating and escaping, each 
particle contributes to the consciousness of the swarm through its previous experiences and instincts. At this point, 
some particles lead the swarm, while the other particles follow the pioneers as a harmonious member of the swarm 
(Rajasekhar, Lynn, Das, & Suganthan, 2017). 
 
PSO was introduced by Kennedy & Eberhart (1995) as a new optimization method in which each particle represents a 
possible solution. 
 
According to process of PSO, if the position and velocity of the particle i which is in the solution space at the moment of 
t are shown xi(t) and vi(t) respectively, then the position of the particle i at the moment of (t+1) can be expressed as in 
the Eq. (11).      
 

xi(t+1) = xi(t) + vi(t+1)                                                                         (11) 
 
The component which is shown as the velocity vector in the expression is one of the main elements of the system. The 
velocity vector includes information which is obtained by both its own and neighbor’s experiences. In PSO method, the 
personal experiential knowledge is called cognitive component of the particle and the component obtained from 
neighbors is also known as the social component. The position of each particle which represents a solution is updated 
for every iteration in the algorithm. This update is made on the basis of each particle's best position lbest (best in the 
locally) and the best of the swarm gbest (best in the globally) for each dimension j ϵ1, ..., N, where N is the dimension of 
the problem. For this reason, it is very important to define the velocity vector correctly, which has both cognitive and 
social components. Hence, vij represents the jth element of the velocity vector of the ith particle. Thus, the velocity of 
particle i is updated by Eq. (12) 
                                                                     

vij(t+1) = wvij(t) + c1r1j(t)[lbest(t) – xij(t)] + c2r2j(t)[gbest(t) – xij(t)]         (12) 
 
where w is the inertia weight which varies 0.8 to 1.2, c1 and c2∼U(0,2) are the acceleration coefficients, and also r1, 
r2∼U(0,1) are stochastic random numbers. The inertia weight w influences the ability of the algorithm to search 
solutions locally or globally. If the value of w decreases, then algorithm tends to search locally, but if w increases, globally 
search is more possible. Selecting all the coefficients and parameters used in the PSO should be compatible with the 
structure of the problem. This issue is quite essential in terms of facilitating the access of optimum. 
 
The personal best position of particle i is the best point which is visited by particle i so far. Actually best position results 
the best fitness value. Hereby the personal best of a particle at time t is updated as Eq. (13) where f denotes the objective 
function that has to be minimized. 
 

yi(t+1) = 
yi(t)     , f(xi(t+1)) ≥ f(yi(t)) 

         (13) 
xi(t+1) , f(xi(t+1)) < f(yi(t)) 

 
In the Eq. 13, f function represents the fitness function. This function indicates that the position of a particle is close to 
optimum or not. Eq. 14 is used to obtain the global best position (yg) from the individual best position.  
 

yg(t)=min{f(xi(t)),...,f(xn(t))}             (14) 
         
A fundamental PSO algorithm is outlined in Figure 2. 
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Figure 2. Flowchart of PSO. Source: Albayrak, 2017).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Novel hybrid algorithm Firefly-Particle Swarm Optimization (F-PSO) 
 
Combining two or more metaheuristic algorithms means enhancing the advantages of the algorithms to create the 
hybrid algorithm that has practical value. Also the hybrid algorithm overcomes the shortcomings of the base algorithms 
and widens the application areas.  
 
In this research, the novel hybrid metaheuristic method named firefly-particle swarm optimization (F-PSO) is introduced 
in order to solve TCTO problem. F-PSO is developed by modifying FA and PSO. Both algorithms have their own 
advantages and wide range application areas. The movement of an individual is only depends on all other brighter 
individuals in FA. Thus, the experimental knowledge of the individual can not affect the searching behavior. Therefore, 
while the brightest individual is located in a local optimum, the population is easily trapped into premature convergence. 
In contrast with FA, PSO takes into account historical knowledge of particles to guide them to search for promising 
regions. Owing to the hybridization of these well-studied metaheuristic methods, F-PSO is characterized by high speed 
and quick convergence properties. The specifications of F-PSO are described below in detail. 
 
The algorithm of F-PSO which visualized in Figure 3 consists of two main phases. The algorithm implements FA in the 
first phase of the method, and then PSO is applied in the second phase. FA works to refine the randomized population. 
After first elimination, PSO handles the fireflies as particles to search the solution space and optimize the problem 
globally.  
 
In the hybrid algorithm, the elimination rate is accepted as 80%, after many experimental runs are performed (Albayrak, 
2017). As a result of tests, this determined rate gives the most reasonable and consistent outputs. If this rate is increased 
to over 90%, the elimination rate is not able to contribute to hybridization of the algorithms. Similarly, if the rate is 
reduced fewer than 75%, the solution space affects negatively due to contraction. Consequently, the rate of elimination 
is recommended in the range of 80% -85% for this type of problems. The phases of the algorithm are explained below. 
 
Phase 1. FA is used to obtain the elite population for PSO.  
      (1.a). Initialize the firefly population which has n randomized individuals. 
      (1.b). Calculate the fitness values of each firefly by using objective function. 
      (1.c). Update the fireflies in according to light intensity and position. 
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      (1.d). Determine the top 0.8n in ranked population. 
      (1.e). Forward the elite population to PSO algorithm. 
 
Phase 2. PSO is used to search the global best individual of the population. 
       (2.a). Initialize PSO algorithm considering elite population. 
       (2.b). Calculate the fitness values of particles. 
       (2.c). Find the global best position in the population.  
       (2.d). Update the particles in according to positions and velocities. 
       (2.e). Check whether the termination criteria are met; if so, terminate the algorithm; otherwise, follow the step 
(1.b). 
 
According to the algorithm flow, the fireflies explore larger search area initially. Thus, convergence speed of the 
algorithm increases and PSO process performs global exploration more efficiently. The F-PSO algorithm is simply 
structured and easy to use, while demonstrating great robustness and fast convergence in solving multi objective global 
optimization problem. 
 
Verification of F-PSO 
 
In order to test and verify F-PSO, there are two common benchmark functions that can be used. These functions provide 
a standardized comparison between PSO, FA, GA, ACO and F-PSO. Both reliability and accuracy abilities of the algorithms 
can be investigated and compared through benchmark functions which are suitable with discrete and multimodal 
optimization problems in the literature (Ma et al., 2014). Also the selected functions f1 and f2 are two of the most 
competitive benchmarks due to many steep hollows with multiple local optimum points. The function specifications are 
shown in Table 1. 
 

Table 1. Specifications of benchmark functions. Source: Velásquez, 2010.  

 

Function name Test function Variable domain Global optimum 

Rastrigin (1974) f1(x) = ∑ (𝑥𝑖
2 − 10 𝑐𝑜𝑠(2𝜋𝑥𝑖) + 10)𝐷

𝑖=1  xi ϵ [-5.12, 5.12] xi = 0 , f1 (x) = 0 

Griewank (1981) f2(x) = 
1

4000
∑ 𝑥𝑖

2 − ∏ cos (
𝑥𝑖

√𝑖

𝐷
𝑖=1

𝐷
𝑖=1 ) + 1 xi ϵ [-5.12, 5.12] xi = 0 , f2 (x) = 0 

 
For the implementation of the benchmark functions, the experimental parameters of PSO, FA, GA, ACO and F-PSO are 
given in Table 2. 
 

Table 2. Experimental parameters of the algorithms. Source: Self elaboration. 

Exp. 
parameters 

PSO FA GA ACO F-PSO 

w 0.85 - - - 0.85 
c 1.35 - - - 1.35 
r 0.5 - - - 0.5 

vmax 0.5 - - - 0.5 
α - 0.2 - - 0.2 
β - 0.2 - - 0.2 
γ - 0.9 - - 0.9 
δ - 0.95 - - 0.95 

Number of 
chromosome 

- - 10 - - 

Crossover - - 
single point and 

double point - - 

Mutation - - single bit random - - 
ρ   - - - 0.8  
ρo - - - 0.2 - 

Search space 
limit 

- - - [-20 20] - 

Pop. size 40 40 40 40 40 
Max. iteration 1000 1000 1000 1000 1000 
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Searching for the minimum value of the functions, 40 experiments are carried out for each method which is limited 
1000 iterations. The results are summarized in Table 3 included best, mean and standard deviation values. As can be 
seen from Tab. 3, the results show that F-PSO outperforms the results of standard algorithms. In other words, F-PSO is 
the best method in terms of solving the functions f1 and f2 which are highly multimodal.  
 
The exploitation and exploration are two major factors among the many components of PSO and FA algorithms in order 
to search the solution space on a global scale efficiently. The enhanced searching ability of F-PSO is based on 
consolidation of powerful algorithms properly. The two-stage structure of the hybrid algorithm prevents to get stuck in 
local optimum which is the main shortcoming of the base algorithms. The prior knowledge obtained FA guides global 
search process for PSO stage. Hereby, better solution candidates are left to the secondary process.  
 

Figure 3. Flowchart of F-PSO. Source: Self Elaboration. 

 
Table 3. Test results of the methods. Source: Self Elaboration. 

Function name Method Best value Mean value Std. deviation 

Rastrigin PSO 0.8351 0.9835 0.1211 
FA 0.6433 0.8821 0.1953 
GA 0.7706 0.9145 0.1738 
ACO 0.6179 0.7224 0.1244 
F-PSO 0.5211 0.6374 0.0936 

Griewank PSO 0.0228 0.0454 0.0185 
FA 0.0723 0.0889 0.0249 
GA 0.0812 0.1003 0.0209 
ACO 0.0798 0.0926 0.0227 
F-PSO 0.0197 0.0256 0.0168 

 

Application of Time-Cost Trade-Off (TCTO) 
 
The application of F-PSO is examined on a sample project which includes TCTO problem.  The sample project is selected 
from the literature that enables comparison. This 18-activity network and time-cost components were described in 
(Feng et al., 1997). Multiplying the number of execution modes with 18 activities by each other, there are approximately 
5.9 billion combinations in the entire project.  
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For this implementation, F-PSO procedures are coded MATLAB R2012a. Then, the algorithm is run on a personal 
computer configured with Intel Core2, 4 GB RAM, Windows10.  
 
In order to observe the coherence of the solutions, the execution is repeated 20 times (Albayrak, 2017). Because the 
true Pareto front (i.e. non-dominated solutions) is difficult to be generated by a few run. 
 

Application Example 
 
The project is visualized with an activity-on-node (AON) network in Figure 4. Hereby, the precedence relationships can 
be seen in this figure easily. In sample project, each activity has different execution modes corresponding time and cost 
options. The activity numbers, predecessors, durations and cost alternatives are presented in Table 4.  Along with five 
execution modes of construction, duration varies from faster to slower and similarly, cost varies from cheaper to more 
expensive. Additionally, the problem is considered to be minimized according to total project duration and cost. 

 
Figure 4. AON network of the problem. Source: Adapted from Feng et al. (1997). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 4. 18-activity TCTO problem. Source: Feng et al. (1997).  

Act. 
No. 

Pred. 
Activity 

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 

  Duration Cost Duration Cost Duration Cost Duration Cost Duration Cost 
  (days) ($) (days) ($) (days) ($) (days) ($) (days) ($) 

1 - 14 2400 15 2150 16 1900 21 1500 24 1200 
2 - 15 3000 18 2400 20 1800 23 1500 25 1000 
3 - 15 4500 22 4000 33 3200 - - - - 
4 - 12 45000 16 35000 20 30000 - - - - 
5 1 22 20000 24 17500 28 15000 30 10000 - - 
6 1 14 40000 18 32000 24 18000 - - - - 
7 5 9 30000 15 24000 18 22000 - - - - 
8 6 14 220 15 215 16 210 21 208 24 120 
9 6 15 300 18 240 20 180 23 150 25 100 
10 2, 6 15 450 22 400 33 320 - - - - 
11 7, 8 12 450 16 350 20 300 - - - - 
12 5, 9, 10 22 2000 24 1750 28 1500 30 1000 - - 
13 3 14 4000 18 3200 24 1800 - - - - 
14 4, 10 9 3000 15 2400 18 2200 - - - - 
15 12 12 4500 16 3500 - - - - - - 
16 13, 14 20 3000 22 2000 24 1750 28 1500 30 1000 
17 11, 14, 15 14 4000 18 3200 24 1800 - - - - 
18 16, 17 9 3000 15 2400 18 2200 - - - - 

 

Albayrak (2017) performed many preliminary experiments and suggested the number of iterations as 500. Similarly, the 
population size was proposed as 20 for this problem. These suggestions are adopted for this paper. To perform the 
problem with F-PSO, the parameters of the algorithm are set as Table 5. 
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Table 5. F-PSO experiments for application. Source: Self Elaboration.  

Parameters of F-PSO 

w 0.85 
c 1.35 
vmax 0.5 
α 0.2 
β 0.2 
γ 0.9 
δ 0.95 
Pop. size 20 
Max. iteration 500 

 
 

Results 
 
The FA algorithm starts with random generation of the initial population. Each obtained value is represented by a firefly 
which is a candidate of the optimum result. The light intense of fireflies indicates the fitness value according to the 
objective function. Then fireflies are compared with each other and the best 80% of the population is transferred to 
PSO process. The position and velocity update operators are applied to population repeatedly until the termination 
condition is satisfied.  The best global optimal value is provided by the end of the procedure. 
 
The method is able to search the solution space and archive the dominated and non-dominated solutions in the 
successive iterations of the algorithm. After the analysis, the dominated solutions are eliminated and non-dominated 
solutions are kept. This leads to separate 24 Pareto optimal solutions for this project. Each of these solutions correspond 
an optimal trade-off point between total time and cost. Pareto front solutions are summarized in Table 6 and Figure 5 
shows the curve of the time-cost trade-off relating to this project, where the horizontal axis represents total duration 
and the vertical axis represents project cost. In according to TCTO curve, the project duration varies from 100 to 152 
days and the cost values vary from $134.870,00 to $100.240,00 totally.  Each of Pareto solutions represents an optimal 
trade-off for the activities of the project entirely.  

 
Table 6. Pareto solutions of TCTO. Source: Self Elaboration. 

Solution No. Duration (days) Cost ($x103) Solution No. Duration (days) Cost ($x103) 

1 100 134.87 13 122 104.02 

2 103 129.8 14 123 103.85 

3 104 126.9 15 124 102.7 

4 105 121.12 16 125 102.1 

5 108 116.415 17 126 101.87 

6 111 114.09 18 128 101.05 

7 113 111.915 19 131 100.98 

8 115 109.9 20 135 100.75 

9 118 107.52 21 139 100.66 

10 119 106.27 22 143 100.52 

11 120 104.92 23 147 100.378 

12 121 104.77 24 152 100.24 

 
Figure 5. Pareto front of TCTO. Source: Self Elaboration. 
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The Pareto front generated by the proposed model provides critical information needed by decision makers to create 
optimal designs under project time and cost constraints. The proposed model allows decision makers to make timely, 
informed decisions based on time and cost preferences. 
 
In F-PSO, which is limited to 500 iterations, the values forming the Pareto front were observed in the first 200 iterations. 
The graphic of number of iterations-fitness value is given in the Figure 6. According to the Figure 6, it is concluded that 
the selected parameters and the number of iterations are sufficient. 
 

Figure 6. Convergence of algorithm in terms of fitness value and iterations. (Source: Self Elaboration)Source: 

 
In order to validate the results, Elbeltagi et al. (2005), Geem (2010) and Lee et al. (2015) are considered in the literature 
because 18-activity project is examined by them using other metaheuristic algorithms. The algorithms to be compared 
are as follows: Particle Swarm Optimization (PSO), Ant Colony Optimization (ACO), Genetic Algorithm (GA), Memetic 
Algorithm (MA), Harmony Search (HS) and Advanced Stochastic Time-Cost Tradeoff (ASTCT). The comparison confirms 
that the current model is capable of obtaining better solution in terms of both cost and duration results. According to 
comparison, harmony search optimal values are second optimal among seven metaheuristic algorithms. The results are 
compared visually as shown in Table 7.  
 

Table 7. Comparison of seven metaheuristic algorithm results on the same problem. Source: Self Elaboration. 

 
 

Conclusions 
 
Every construction project has its own unique conditions. The uniqueness of construction projects also means that the 
external influences and constraints would be different, yet subject to change throughout the project timeline. 
Therefore, it is important to attain time-cost alternatives that are appropriate to the project conditions. This approach 
can be achieved through metaheuristics and Pareto front.  
 
This paper presents a novel method named F-PSO for solving TCTO problem which is one of the most difficult discrete 
optimization problems in construction project planning, due to various variables and constraints. F-PSO is based on the 
hybridization of FA and PSO to improve the exploration and exploitation abilities of both algorithms. Also, better 
optimality of the solutions and quick convergence are aimed when building the hybrid method. For this purpose, the 
poor solutions according to fitness values are disqualified in FA section of the process, before passing PSO that is the 
second step of the algorithm. Primarily, two benchmark equations are tested to verify the algorithm. After verification, 
F-PSO is implemented on a well-known 18-activity TCTO problem which enables the comparison. The proposed 
algorithm finds out the optimal solution and defines the Pareto front. The results are compared to other five 
metaheuristic algorithms which are applied on the same problem. The comparison shows that, F-PSO is generally found 
to perform better than other algorithms in terms of both minimum cost and duration results. The improvement of the 
algorithm combination provides an efficient method regarding to obtain shorter and more economical alternatives of 
the construction projects.  
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The proposed F-PSO is simple, robust and efficient. It does not impose any limitation on the number of objectives and 
can be extended to include more objectives. Further minor modifications of F-PSO algorithm hold potential to resolve 
other multi-objective optimization problems in the field of construction management such as the tradeoffs among 
performance, cost, and reliability; time, cost and safety tradeoffs; and resource-constrained and resource-leveling in 
project scheduling activities. 
 
In this study, the quality and risk factors are not considered and they are assumed stable against the changes of time 
and cost.  The idea of integrating such factors into study will provide new insights for future works. 
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